卡内基梅隆大学利用人工智能方法开发电解液 加快电池创新步伐
盖世汽车讯 据外媒报道,为了满足独特的设计要求,研究人员越来越多地利用机器学习来开发新材料和化合物。这种新颖的方法有助于减少开发和测试材料的时间,更快获得新发现。在卡内基梅隆大学(Carnegie Mellon University),机械工程系博士生、塔塔咨询服务公司(Tata Consulting Services)的Adarsh Dave将其应用于电池设计,并取得惊人发现。
(图片来源:techxplore)
Dave希望减少温室气体排放,相对来说电池创新是一种减少排放的简易方法。然而,由于化学反应过程相当复杂,实现创新往往需要很长时间,研究团队开始寻找加快速度的方法。这项研究的重点在于水系电解液。Dave表示,这种电解液非常适合储存可再生能源。“设计高性能水基电池是解决这一问题的重要过程。然而,可供选择的配方数量惊人,这就是我们的设计过程的切入点。”
Dave及其团队建造了一个名为“奥托”(Otto)的机器人平台,通过测量电解液的特性来确定其在电池中的有效性。将机器学习与Otto相结合,共同优化电池的电解液。计算机会告诉Otto测试哪些电解液,然后Otto告诉计算机这些电解液的性质。这种往返关系有助于机器学习进行优化,找到最好的电解液。Otto可以像人类一样快速混合和测试电解液,但与人类不同的是,Otto可以全天侯运行。
Dave及其团队通过机器学习,发现了一种“非直觉的、新颖的电解液”。如果没有此项研究,对设计人员来说,这种电解液可能还是未知的。这显示了机器学习在未来设计过程中广大的应用前景。此外,Otto可以自动操作,加快测试和实验过程,使科学家能够专注于宏观研究。
斯科特能源创新研究所(Scott Institute For Energy Innovation)负责人Jay Whituck教授表示:“在创新方面,虽然机器人或算法无法取代训练有素的化学家的直觉,但我们的系统无疑可以实现自动化并加速日常的科学和设计任务进程。我希望看到,其他实验室的同事们通过自动化来摆脱无聊的东西,真正加快电池创新的步伐。”
相关推荐
- 2020/11/30国产特斯拉Model Y获批在中国销售
- 2020/11/30新增数量超去年,今年我国新增新能源汽车相关企业5.5万家
- 2020/11/30超越比亚迪,蔚来成为国内市值最高车企
- 2020/11/30特斯拉Model Y、ARCFOX αS进入新一批新能源汽车推荐车型目录
- 2020/12/3江淮汽车:江汽控股和江淮大众获增资完成工商登记变更
- 2020/12/3恒大汽车获中国恒大6.6亿港元增持
- 2020/12/3东风汽车11月销量1.4万辆 同比微降6.96%
- 2020/12/3戴姆勒与北汽福田将国产奔驰Actros重卡 总投资38亿元
- 2020/12/3马斯克发布内部信,告诫员工特斯拉利润率只有1%
- 2020/12/2【国际快讯】马斯克对合并持开放态度;大众并未讨论迪斯的续约申请;西班牙/法国新车注册量下跌
- 2020/12/2【国际快讯】马斯克对合并持开放态度;大众并未讨论迪斯的续约申请;戴姆勒向德国员工发放疫情补贴
- 2020/12/2搭载1.5T高功发动机 智跑Ace将于2021年5月中旬
- 2020/12/2“国六”之下,平行进口只能被迫放弃?
评论区域